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Abstract 29 

Biological psychiatry is a major funding priority for organizations that fund mental health 30 

research (e.g., National Institutes of Health). Despite this, some have argued that the field has 31 

fallen short of its considerable promise to meaningfully impact the classification, diagnosis, and 32 

treatment of psychopathology. This may be attributable in part to a paucity of research about key 33 

measurement properties (“physiometrics”) of biological variables as they are commonly used in 34 

biological psychiatry research. Specifically, study designs informed by physiometrics are more 35 

likely to be replicable, avoid measurement concerns that drive down effect sizes, and maximize 36 

efficiency in terms of time, money, and the number of analyses conducted. This review describes 37 

five key physiometric principles (internal consistency, dimensionality, method-specific variance, 38 

temporal stability, and temporal specificity), illustrates how lack of understanding about these 39 

characteristics imposes meaningful limitations on research, and reviews examples of 40 

physiometric studies featuring a variety of popular biological variables to illustrate how this 41 

research can be done and substantive conclusions drawn about the variables of interest. 42 

 43 

Keywords: Biological psychiatry, measurement, methods, reliability, internal consistency, 44 

dimensionality  45 
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Introduction 46 

 The integration of biological and psychopathological research into the field of biological 47 

psychiatry is prioritized highly at the National Institutes of Health. Whereas there is substantial 48 

discussion and standard reporting of certain types of measurement characteristics (e.g., 49 

dimensionality, retest reliability) for self-report questionnaires, less work has been done to 50 

investigate these measurement features for many relevant biological constructs and they are less 51 

frequently reported (Hajcak and Patrick, 2015). This is not to say that there has not been 52 

important investigation and regular reporting of measurement characteristics specific to 53 

biological variables (e.g., intra-assay coefficients of variation). Rather, several metrics key to 54 

common methodological and statistical practices in psychiatry research have not received 55 

comparable attention for biological variables. This may be due to greater confidence in the 56 

measurement of that which is directly observable (e.g., concentrations of analytes in blood). 57 

However, the ease with which a construct is operationally defined and measured does not 58 

directly translate to measurement qualities suitable for common statistical approaches. 59 

It is important to remember Cronbach and Meehl’s (1955) admonition, "One does not 60 

validate a test, but only a principle for making inferences" (p. 297). Confidence that a test can 61 

measure a variable accurately is not sufficient to know that the test facilitates the inferences 62 

tested in statistical models. For that, there is need for a thorough analysis of measurement 63 

characteristics germane to the intended data collection and statistical procedures. Armed with 64 

information about key measurement characteristics (henceforth referred to as “physiometrics”; 65 

Segerstrom & Smith, 2012), researchers can design more cost-effective and well-powered 66 

studies that are better indicators of the true associations between variables of interest. 67 

The Perils of a Paucity of Physiometric Research 68 



Moriarity 4 

 

 

Variables with poor or unknown physiometrics impose multiple limitations to meaningful 69 

research. Thus, to ensure that biological psychiatry research reaches its maximum potential 70 

utility, it is important to evaluate measurement qualities key to typical methods used in 71 

biological psychiatry research to determine what study designs and analytic techniques are best 72 

suited to various biomarkers. In this section, we outline some of the risks and constraints 73 

imposed by research using variables with poor or unknown measurement characteristics. 74 

Internal Consistency 75 

Many theories in biological psychiatry are about multifaceted biological constructs (e.g., 76 

reward processing, inflammation, etc.); however, studies commonly test multiple individual 77 

indices of these larger constructs (Segerstrom and Smith, 2012). Given concerns about the 78 

reliability of single-item measures and issues with multiple statistical comparisons, increased use 79 

of composite biological variables might benefit replicability in biological psychiatry. When used 80 

thoughtfully, composite measures also have the benefit of accentuating variance shared between 81 

components and reducing the impact of measurement error. When using composite measures, it 82 

is important to report internal consistency, which indicates the level of shared variance between 83 

component variables (“true score”) relative to unshared (“error”) variance (Cortina, 1993). 84 

Typically, researchers have hypotheses about the relationship between two constructs (e.g., 85 

inflammation and depression); consequently, it is beneficial to maximize the “true score” of their 86 

constructs of interest. Although reporting internal consistency for self-report questionnaires is 87 

standard practice, it is infrequently reported for applicable biological variables. For example, 88 

internal consistency is reported inconsistently for measures involving the creation of a single 89 

score from several trials of a task (e.g., error related negativity (ERN)), despite providing insight 90 

regarding consistent performance across the task and having implications for effect size (Hajcak 91 
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et al., 2017). Thus, whenever aggregate variables are used, it is important to report a measure of 92 

internal consistency (e.g., Cronbach’s α, coefficient Ω). 93 

Dimensionality 94 

Another important consideration when working with aggregate measures is the concept 95 

of dimensionality. Dimensionality refers to the degree to which a set of variables indicates the 96 

presence of one or more higher-order constructs. For example, under traditional 97 

conceptualizations of psychopathology, all behaviors on a depression questionnaire are 98 

associated with the construct of depression. Similarly, an assortment of biological variables (e.g., 99 

different proinflammatory proteins) could serve as markers of a higher-order construct (e.g., 100 

inflammation). It also is important to consider potential construct heterogeneity, the possibility 101 

that several lower-order constructs (e.g., pro- and anti-inflammatory processes) might comprise a 102 

larger construct of interest (e.g., inflammation).   103 

Empirical evaluation of dimensionality is possible with dimension reduction techniques 104 

such as exploratory factor analysis (EFA) and principal components analysis (PCA). Both 105 

approaches investigate the structure of data with the logic that if all component variables are 106 

indicators of the same process, they should be strongly associated with one another (i.e., have 107 

high internal consistency, Clark & Watson, 1995, 2019; Loevinger, 1957). As such, dimension 108 

reduction approaches can help identify whether sets of variables are unidimensional or 109 

multidimensional in nature as well as components that might not load onto any of these 110 

processes (Tabachnick and Fidell, 2013). The primary theoretical distinction between the two is 111 

that the dimensions found in EFA are theorized to cause the variables, whereas the dimensions 112 

found in PCA are simply aggregates of observed variables. Statistically, only shared variance is 113 

analyzed in an EFA, but all variance is analyzed in a PCA. 114 
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Modeling decisions uninformed by dimensionality research can have negative 115 

implications. Assuming unidimensionality that is not present (i.e., aggregating unrelated 116 

components) reduces internal consistency and, consequently, the maximum observable effect 117 

size (Hajcak et al., 2017). Relatedly, if only some dimensions/indicators are related to a criterion 118 

of interest, aggregating them with unrelated variables might wash out true effects. Alternatively, 119 

falsely assuming multidimensionality reduces power via failure to aggregate shared variance of 120 

interest. Further, it introduces issues with multiple comparisons.  121 

However, these techniques are not appropriate for all datasets. It is important to consider 122 

that the maximum number of dimensions is constricted by the number of indicator variables 123 

tested. In other words, there needs to be enough variables per dimension to statistically anchor 124 

each dimension. Further, datasets with lower numbers of variables, higher dimensionality, and 125 

weaker associations between the variables and the dimensions require higher sample sizes to 126 

produce stable results (Guadagnoli and Velicer, 1988). Additionally, it is ill-advised to draw 127 

conclusions about dimensionality without thoughtful consideration of biological plausibility. 128 

Consequently, it is important to consider dimensionality when multiple indicators of a broader 129 

construct of interest are collected before proceeding with hypothesis testing involving that 130 

construct. However, modeling decisions should be informed both by empirical investigation (if 131 

appropriate in the context of the dataset used) and biological plausibility. 132 

Method-specific Variance 133 

 Although not a “metric” in the sense of something explicitly testable and reportable like 134 

the other characteristics reviewed here, a critical measurement issue for biological psychiatry is 135 

method-specific variance. In addition to the “random” variance that contributes to measurement 136 

error, there is variability associated with the specific method of measurement (e.g., self-report, 137 
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behavioral, psychophysiological) that is unrelated to the true construct of interest (Patrick et al., 138 

2013). Consequently, two measures of the same construct using different methods will have 139 

smaller associations compared to two measures using similar modalities (e.g., self-report 140 

correlated with biological vs. self-report correlated with self-report). Given that biological 141 

psychiatry is, by definition, a multimodal field, this is a pervasive issue that needs to be 142 

considered when designing studies and interpreting results. Thus, method-specific variance 143 

should be considered for all studies including multiple measurement modalities. This issue 144 

should inform power analyses, measurement error-adjusted analytic techniques, and 145 

consideration of aggregating multimethod assessments of the same construct. For a more 146 

detailed review of this issue and strategies to address it, see Patrick et al. (2019). 147 

Temporal Stability 148 

Whereas a measure given to multiple people at a single time point has two sources of 149 

variance (between-person differences and measurement error), a measure given multiple times 150 

introduces a third source of variability: within-person variance. Measures with low within-person 151 

variability (small changes over time) have high temporal stability. Temporal stability is most 152 

frequently quantified using retest Pearson correlations (correlating scores on a measure at two 153 

different time points) and intraclass correlation coefficients (ICCs, which quantify the proportion 154 

of stable between-person differences across multiple time points). It is standard practice to report 155 

(or at least cite other work about) the temporal stability of self-report measures, but it is reported 156 

less consistently for biological variables (e.g., Moriarity et al., 2020b). This is concerning, given 157 

that information about temporal stability is necessary to interpret the probability with which a 158 

score at baseline will be similar to the score at follow-up. It is important to note that highly stable 159 

measures are not always the goal; many biological constructs would be expected to have both 160 
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trait (relatively stable) and state (varying across time and situational factors) components. Target 161 

temporal stability should be informed by the conceptual stability of the construct in question 162 

(e.g., few would expect mood to be 100% stable in a community sample over the course of a 163 

year). Temporal stability should be reported for all longitudinal studies. It should be calculated 164 

in the sample when repeated measures are available, or estimates reported from existing studies 165 

when calculation within the sample is impossible. 166 

Temporal Specificity 167 

Somewhat related is the concept of temporal specificity. Longitudinal data are necessary 168 

to establish directionality of associations; however, time between data points is an important 169 

methodological consideration. For example, the relationship between eating a hot pepper and 170 

experiencing pain after a couple minutes would not be as strong days after the meal. Thus, 171 

exploratory analyses are necessary to evaluate how the relationships between variables might 172 

fluctuate as a function of time (including potential developmental considerations). Temporally-173 

informed study designs could improve replicability, provide information about when changes in 174 

biological risk factors manifest behaviorally (and vice-versa), and inform treatment studies given 175 

expected delays between interventions and symptom reduction (e.g., anti-inflammatory 176 

treatments for depression). Thus, the field would benefit from more exploratory studies 177 

investigating the temporal specificity of associations of interest to identify optimal time lags 178 

between measurements. 179 

Artificial Effect Size Deflation and Power 180 

The practical implications of many biological psychiatry studies are often questioned 181 

because they frequently have small effect sizes, which could be directly impacted by the use of 182 

measures uninformed by their physiometrics (such as those reviewed above). To illustrate, 183 
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consider the formula for the maximum correlation between two variables as a function of their 184 

reliability: 𝑟𝑥𝑦(max) = √(𝑟𝑥𝑥𝑟𝑦𝑦) where 𝑟𝑥𝑦 represents the maximum possible correlation 185 

between variables x and y, 𝑟𝑥𝑥 represents the reliability of variable x and 𝑟𝑦𝑦 represents the 186 

reliability of variable y (Davidshofer and Murphy, 2005). Only if two measures are perfectly 187 

reliable (both 𝑟𝑥𝑥 and 𝑟𝑦𝑦 = 1) can the maximum correlation = 1. As reliability decreases, so does 188 

the maximum observable correlation. Consider two research teams testing the same hypothesis 189 

and using the same measure for variable x (𝑟𝑥𝑥 = .70), but different measures for variable y (𝑟𝑦𝑦 = 190 

.70 for Team A but 𝑟𝑦𝑦 = .30 for Team B). The maximum observable correlation is .70 for Team 191 

A, but only .46 for Team B. Similar results have been found concerning the relationship between 192 

internal consistency and effect sizes (Hajcak et al., 2017). 193 

This penalty is magnified in more complex designs. For example, many variables in 194 

biological psychiatry (e.g., inflammation) are theorized to be mediators between stress and 195 

psychopathology (e.g., Moriarity et al., 2018; Slavich and Irwin, 2014). Mediation analyses 196 

involve calculating the product of the association between i) the focal predictor and the mediator 197 

(a’ pathway) and ii) the mediator and the outcome variable (b’ pathway). Thus, unreliability of 198 

the mediator will dampen both estimates. Consequently, the downward bias introduced by poor 199 

reliability is effectively squared when calculating their product.  200 

This bias also exists for group comparisons, which often occur in biological psychiatry in 201 

the form of case-control studies (e.g., Ng et al., 2019). The test statistics for these analyses 202 

(independent samples t-tests and between-subjects ANOVAs) are a ratio of the magnitude of the 203 

group difference divided by a variance component. Poor reliability inflates variability, 204 

decreasing the maximum observable effect. For example, consider a researcher using an 205 

independent samples t-test to compare levels of interleukin (IL)-6 between participants with 206 
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Major Depressive Disorder (MDD) and non-depressed controls. The formula for an independent 207 

samples t-test is 𝑡 =
𝑀1−𝑀2

𝑆𝐸
. Suppose the difference in IL-6 for individuals with MDD vs. non-208 

depressed controls (M1-M2) is .30. In scenario A, the standard error of this difference (SE) is .15, 209 

and the t-score will = 2. The critical value that the t-score must be above to be significant at p < 210 

.05 is 1.96, so the researchers have a significant result. Now imagine scenario B, in which the 211 

group difference is the same, but the SE of this difference increases to .2 because of less reliable 212 

IL-6 measurement. Now the t-score is 1.5, which is not significant, despite having the same 213 

observed difference between the groups. The same logic applies for standardized (but not 214 

unstandardized) measures of effect size (e.g., Cohen’s 𝑑 =
𝑀1−𝑀2

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
). Given the same difference 215 

between two means, as the standard deviation increases, d decreases. However, this does not 216 

mean that measurement error always results in attenuated effect sizes. Although it is true that the 217 

median standardized effect size will be lower when estimated with vs. without error, random 218 

error variance also can result in over-estimates (Segerstrom and Boggero, 2020), leading to false 219 

positives that could inspire misguided studies and intervention efforts.. Thus, inflated variability 220 

caused by unreliable measures can cause true effects to be overlooked both in terms of 221 

probability under null-hypothesis testing as well as their substantive implications via 222 

standardized effect sizes. Given the importance of individual differences research in the Research 223 

Domain Criteria (RDoC; Cuthbert & Kozak, 2013) initiative, this is a key (and addressable) 224 

source of bias in popular analytic strategies for NIH-funded research.  225 

Examples of Physiometric Research in Biological Psychiatry 226 

 Below, several examples of physiometric research investigating a variety of biological 227 

variables are reviewed to illustrate the techniques used and conclusions about the variables of 228 

interest. 229 
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Internal Consistency 230 

 As previously discussed, strong internal consistency is evidence that various components 231 

of a measure are responded to similarly. To illustrate the importance of investigating internal 232 

consistency for neural measures, Hajcak and colleagues (2017) evaluated error-related negativity 233 

(ERN) averaged across multiple trials as a function of the number of trials completed by 234 

participants in two groups (with and without generalized anxiety disorder). The study reported 235 

two measures of internal consistency: Cronbach’s α (how representative one trial was of all 236 

trials) and split-half reliability (correlating the average scores from the odd and even trials). They 237 

found that α increased sharply between four and eight trials, and modestly until approximately 238 

fourteen trials, after which α only increased subtly. Cronbach’s α reached a maximum of .75 - 239 

.85, which was comparable to the Spearman-Brown corrected split-half reliability (rsb = .71-.75). 240 

The lack of reliability when fewer trials were included is an expected feature of Cronbach’s α, 241 

and dovetails with concerns about the reliability of single-item/few-item indicators. Further, the 242 

diminishing returns of increased trials reflects that more trials only decreases random error, not 243 

systematic error (e.g., error introduced by data collection techniques). These results can help 244 

researchers plan the ideal number of trials to minimize participant burden without resulting in 245 

data with subpar measurement qualities and, consequently, limited utility. Additionally, they 246 

highlight one way of comparing different methods of data collection. For example, comparing 247 

the trajectories and plateaus of internal consistency as number of trials increases could provide 248 

insight on ratios of random vs. systematic error for two different ERN measures.  249 

 Kaye, Bradford, and Curtin (2016) present a thorough investigation of several 250 

measurement qualities (internal consistency, temporal stability, and effect size stability, the latter 251 

two will be discussed later) of acoustic startle (defensive reflex in response to brief, startling 252 



Moriarity 12 

 

 

noise probes) and corrugator responses (reaction of the corrugator muscle associated with 253 

frowning) during a no-shock/predictable shock/unpredictable shock (NPU) task, an affective 254 

picture viewing task, and resting state task over two study visits (approximately one-week apart). 255 

Specifically, they evaluated Spearman-Brown corrected split-half reliability between odd and 256 

even trials as a measure of internal consistency. Further, the authors compared performance of 257 

within-person standardized (Bradford et al., 2015) vs. unstandardized scores for startle 258 

potentiation and the time domain and frequency domain for corrugator potentiation. For the sake 259 

of brevity, this review will focus on startle potentiation. For the NPU task, the internal 260 

consistency for raw scores was higher than standardized scores for both predictable and 261 

unpredictable startle responses, with scores ranging from good to adequate (rsb = .81, .64, .57, 262 

.52, respectively). For the affective picture viewing task, internal consistency for startle 263 

modulation was poor for all scores, but standardized scores were better for pleasant, and raw 264 

scores were better for unpleasant, startle modulation (raw pleasant rsb < .00, standardized 265 

pleasant rsb = .16, raw unpleasant rsb = .14, standardized unpleasant rsb < .00). Because within-266 

subject standardized scores would have no utility for the resting state task, only internal 267 

consistency was reported for raw scores (rsb = .95). In addition to their descriptive value, 268 

comparison of different types of responses and the influence of within-person standardization 269 

across several tasks is informative for the establishment of best-practices for these behavioral 270 

tasks. 271 

Given the rise in popularity and high cost of functional magnetic resonance imaging 272 

(fMRI) in biological psychiatry, investigation of measurement properties of these methods is 273 

crucial. Luking and colleagues (2017) evaluated the split-half internal consistency for ERPs and 274 

blood oxygen level-dependent (BOLD) responses to monetary gain and loss feedback (an fMRI 275 
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measure) within the ventral striatum and medial and/or lateral prefrontal cortex using Spearman-276 

Brown corrected split-half reliability (comparing odd/even trials). Similar to Kaye et al. (2016), 277 

they compared several scoring methods: raw scores, difference scores (gain – loss), and residual 278 

scores (gain controlling for loss). Raw BOLD responses across all regions and ERPs to both gain 279 

and loss feedback demonstrated high internal consistency (.66 ≥ rsb ≥ .86). Raw scores had 280 

consistently higher internal consistency than residual scores (.26 ≥ rsb ≥ .50), which had 281 

uniformly higher internal consistency than difference scores (.02 ≥ rsb ≥ .36). Thus, although 282 

residual scores may not have ideal internal consistency, they might be preferable over 283 

subtraction-based difference scores for studying between-person differences in within-person 284 

processes with these measures.  285 

Instead of concluding that difference scores (common in many areas of biological 286 

psychiatry) are universally unreliable, it is important to consider why reliability was lowest for 287 

the difference scores, and under what context difference scores have utility. First, when variance 288 

associated with one variable is removed from another (either via subtraction or creating a 289 

residual term), the variance removed will be from the reliable variance because it is impossible 290 

for two variables to share random error. This reduction in reliability is greater when the two raw 291 

variables are highly correlated (Thomas and Zumbo, 2012). However, as emphasized in the 292 

discussion of temporal stability above, reliability needs to be considered in light of the expected 293 

true reliability. For reasons beyond the technical scope of this review (see Rogosa and Willett, 294 

1983), when the individual differences in the difference score are not small, the reliability of the 295 

difference score will be more similar to the reliability of the raw scores. There also is evidence 296 

that BOLD difference scores that contrast win and loss conditions vs. neutral, instead of 297 

comparing win to loss conditions, can result in more reliable estimates (Holiga et al., 2018; 298 
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Plichta et al., 2012), but the appropriateness of this approach depends on the research question at 299 

hand. Alternatively, many have argued that polynomial regression is a preferable technique to 300 

using difference scores altogether (Edwards, 2001).  301 

It is important to note that residual/difference scores also hold the potential to isolate 302 

theoretically relevant variance in certain designs. For example, consider a study that compared 303 

P3 amplitudes (an event related potential) to aversive vs. neutral stimuli (used to index general 304 

reactivity) as predictors of threat sensitivity, finding the split-half reliability excellent for both 305 

conditions (rsb = .92 and .90, respectively; Perkins et al., 2017). Split-half reliability for the 306 

difference between the two conditions (aversive-neutral) was poor (rsb = .29). Recalling that 307 

variance removed when creating a difference score always comes from true variability, never 308 

random error, this decrease in reliability is not a surprise. As would be expected considering the 309 

relationship between reliability and correlations described above, the absolute value of the 310 

correlation between the difference score and threat sensitivity (r = -.12) was smaller than the 311 

correlation between general reactivity and threat sensitivity (r = .16). However, a larger 312 

proportion of the systematic variance (true score) in the difference score was associated with 313 

threat sensitivity (i.e., (-.122/.29) * 100 = 5.00%) compared to general reactivity (i.e., (.162/.92) * 314 

100 = 2.78%). This approach was particularly important when considering that the association 315 

between general reactivity and threat sensitivity was positive, but that the association between 316 

the variance unique to the aversive condition and threat sensitivity was negative. Thus, the 317 

variance from general reactivity could washout the association unique to the aversive condition if 318 

it were not removed from the variable. Consequently, it is important to consider how variables 319 

with modest reliability, but that include substantial amounts of criterion-related variance, can be 320 

informative.  321 
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Dimensionality 322 

 Recall the example of inflammation as a complex construct often indexed by several 323 

indicators (Segerstrom and Smith, 2012). One study of atherosclerosis (Egnot et al., 2018) 324 

assessed the dimensionality of several inflammatory proteins and coagulation biomarkers 325 

(specifically, CRP, IL-6, fibrinogen, Lp(a), slCAM-1, PTX-3, and D-dimer). The results of the 326 

EFA found a two-factor solution: Factor 1 consisted of CRP, IL-6, and fibrinogen; Factor 2 327 

consisted of D-dimer and PTX-3, whereas slCAM-1 and Lp(a) did not load on either factor. 328 

Factor 1 was interpreted to represent a non-specific inflammatory process, whereas Factor 2 was 329 

interpreted to indicate coagulation burden. The authors then tested the factors as predictors of 330 

several outcomes, finding some associations unique to only one of the two factors. For example, 331 

although both factors were positively associated with risk for low ankle brachial index, higher 332 

levels of coagulation burden (Factor 2), but not inflammation (Factor 1), were associated with 333 

elevated common femoral artery intima-media thickness, suggesting that coagulation burden 334 

might be a better indicator of subclinical peripheral artery disease than inflammation.  335 

 Independent component analysis (ICA) is a technique for investigating dimensionality 336 

primarily used with neuroimaging and EEG data. Kakeda et al. (2020) used ICA as a data-driven 337 

approach to identify brain regions that might differ in grey matter volume between individuals 338 

with depression and controls, and whether the volume in these regions correlated with serum 339 

TNFα. Specifically, they used source-based morphometry (which applies an ICA to a segmented 340 

image) to arrange the voxels into common morphological features of grey matter concentration 341 

among participants. Results indicated fourteen independent structural components; however, 342 

based on previous work (Williams, 2016), Kakeda and colleagues excluded four primarily 343 

cerebellar networks. Of the ten remaining components, two (a prefrontal network and an insula-344 
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temporal network) had less grey matter volume in a group of participants with depression 345 

compared to controls. Of these two, serum TNFα was significantly negatively correlated with the 346 

prefrontal network, but was not significantly correlated with the insula-temporal network.   347 

Method-specific Variance 348 

 As described earlier, a major obstacle for biological psychiatry research is domain-349 

specific method variance, the systematic tendency for two measures of the same construct using 350 

different modalities (e.g., self-report vs. biological vs. behavioral) to have smaller associations 351 

than two measures using the same modality. Ostensibly, one reason for this is that measures from 352 

disparate modalities each contribute unique method-specific error (variance related to the 353 

measurement method and unrelated to the construct of interest; Patrick et al., 2013). This 354 

suggests that the integration of indices of a construct across multiple methods of measurement 355 

into single variables, described as the “cross-domain approach” (Patrick et al., 2013; Venables et 356 

al., 2018), might accentuate the shared variance related to the construct of interest, improving 357 

utility and construct validity.  358 

To illustrate this, Nelson, Patrick, and Bernat (2011) measured three event-related 359 

potential (ERP) measures (ERN and P3 response to target stimuli from a flanker task and P3 360 

response to feedback stimuli from a gambling feedback task) and investigated a) whether these 361 

measures represent overlapping indicators of externalizing proneness, and b) whether they index 362 

a shared neural process that accounts for their individual associations with externalizing 363 

proneness. Results of an EFA suggested that a single factor accounted for the covariance among 364 

all three variables, and that all three variables contributed similarly to this shared factor. To 365 

evaluate whether this factor represented brain processes associated with externalizing proneness, 366 

Nelson and colleagues (2011) ran another EFA including the three ERP measures as well as a 367 
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self-report measure of externalizing proneness, again finding a single factor. Results of analyses 368 

using the aggregated ERP factor found that the aggregate measure had stronger correlations with 369 

the majority of physiological and psychometric externalizing proneness criterion variables tested 370 

than did the individual ERP measures. In fact, the composite factor out-performed comparison 371 

ERP measures (not included in the composite) in predicting externalizing proneness, likely due 372 

to the composite variable accentuating the shared externalizing proneness-related variance in the 373 

individual ERP variables. However, as described above (and discussed by the authors), a factor 374 

analysis on three ERP components and a self-report measure is not enough to provide a 375 

convincing evaluation of the true structure of these measures or provide enough options to 376 

support alternative models. In other words, there were not enough components to anchor more 377 

than one factor, so the factor analytic solution could, at most, feature one aggregate measure 378 

and/or unrelated variables. Still, this study serves as an example of how variable aggregation can 379 

result in variables with stronger predictive validity than the component parts. 380 

To extend this work, Venables and colleagues (2018) first ran EFAs on several indices of 381 

inhibition-disinhibition within specific measurement domains (self-report, behavioral 382 

performance, brain response). Consistent with the ERP study above, indices within discrete 383 

measurement domains revealed single factor solutions. All possible pairwise correlations 384 

between these three domain factors were significantly positively correlated. Next, two 385 

confirmatory factor analyses (CFA) were estimated: the first specifying all indices across the 386 

three measurement domains loading onto a single factor, and the second specifying three lower 387 

order factors corresponding with each measurement method that, in turn, load onto a higher order 388 

cross-domain factor. The former demonstrated poor model fit, but the cross-domain factor model 389 

fit the data well. Further, comparative fit indices found significant differences in model fit, 390 
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suggesting that inhibition-disinhibition is best represented by a cross-measurement domain, 391 

hierarchical factor structure. Additionally, the cross-domain factor frequently demonstrated 392 

significant correlations with the vast majority of criterion variables tested, whereas 393 

measurement-domain specific scores were less likely to be correlated with criterion variables 394 

from other measurement domains. Thus, these results demonstrate how thoughtful investigation 395 

of dimensionality in biological psychiatry can improve the construct validity of variables by the 396 

creation of cross-measurement domain composites that ameliorate concerns about a) the 397 

reliability of single-item measures (which are common in biological psychiatry) and b) 398 

downward-biased estimates due to measurement domain-specific variability.  399 

Temporal Stability 400 

 Out of all the physiometric characteristics described above, biological psychiatry 401 

probably has done the best with assessing and reporting temporal stability (the reliability of a 402 

measure between different time points). However, there are many constructs of interest for which 403 

there is a paucity of research on this topic, especially when considering the wide breadth of study 404 

durations seen in behavioral health research. Before reviewing some examples of temporal 405 

stability research in biological psychiatry, it is important to emphasize that temporal stability 406 

estimates are only informative for the duration in which they are studied. Unfortunately, across 407 

all disciplines of behavioral health research, it is commonplace for previous work to be cited as 408 

evidence that a measure has sound temporal stability with no reference to the duration for which 409 

the measure’s stability originally was assessed. Further, it also is essential to reiterate that having 410 

low temporal stability is not always indicative of a poor measure. The temporal stability of a 411 

measure is dependent on, and constrained by, stability of the construct under question. If one 412 

evaluated the 6-month temporal stability of depressed mood and height in a sample of adults, one 413 
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would expect height to be more stable. Other contextual concerns, such as age, also are important 414 

to consider. For example, one would expect relatively lower 6-month temporal stability of height 415 

in a sample of 10-year-olds than a sample of adults.  416 

 The most straightforward metric of temporal stability is retest reliability using Pearson’s 417 

r, the correlation between a measure at two different time points. In addition to internal 418 

consistency metrics, Kaye et al. (2016) (described above) also investigated one-week temporal 419 

stability of startle and corrugator responses to three tasks (NPU, affective picture viewing, and 420 

resting state) comparing raw vs. within-person standardized scores (Bradford et al., 2015) as well 421 

as differences in the effect size of task manipulations (predictable and unpredictable potentiation 422 

for the NPU task and pleasant and unpleasant modulation for the affective picture viewing task) 423 

between the two sessions. Similar to above, this review only will cover startle responses for the 424 

sake of brevity.  425 

Temporal stability was higher for raw scores for both predictable and unpredictable 426 

startle potentiation during the NPU task (both r = .71) compared to within-person standardized 427 

scores (r = .58 and .49, respectively). When comparing the effect size of NPU manipulations 428 

between study visits, no significant differences were observed for raw or standardized 429 

predictable startle potentiation and raw unpredictable startle potentiation (all ήp
2 = .001-.033, p > 430 

.05), but the standardized startle potentiation was smaller at the second visit (ήp
2 = .04,  p = .03), 431 

suggesting that the manipulation lost potency over time. Regarding the affective picture viewing 432 

task, one-week temporal stability was poor for both raw and standardized scores for pleasant 433 

startle modulation (r < .00 and = .08, respectively), but was higher for the unpleasant startle 434 

modulation (r = .50 for raw, r = .40 for standardized). The effect sizes for the raw pleasant and 435 

unpleasant startle modulations were not significantly different after one week (ήp
2 = .02, p = .10; 436 
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ήp
2 = 03; p =.09, respectively). It is interesting to note that the effect sizes for the standardized 437 

pleasant and unpleasant startle modulations differed between testing sessions (ήp
2 = .05,  p = .02; 438 

ήp
2 = .10, p < .001, respectively), but in opposite directions (Visit 2 was smaller for pleasant 439 

startle modulation, but larger for unpleasant). As mentioned above, standardized scores for the 440 

resting state task have no utility, but the raw scores had high one-week temporal stability (r = 441 

.89) and scores were smaller at Visit 2 (ήp
2 = .21, p < .001, respectively). There was no 442 

manipulation during (and consequently, no effect size for) the resting state task. In sum, these 443 

results demonstrate how different analytic approaches (i.e., raw vs. within-person standardized 444 

scores) can influence important temporal dynamics of behavioral tasks such as stability and the 445 

potency of the manipulation, which have important implications for designing and interpreting 446 

research using repeated measures of these tasks. 447 

Temporal stability also can be influenced by how extreme values are handled, as 448 

evidenced by Landau et al. (2019), a study investigating salivary CRP. Immunoassays use 449 

standard concentrations of an analyte to generate a standard curve, on which sample values are 450 

interpolated. Many samples have values that are flagged by the procedure as too high or low to 451 

fit onto the standard curve. In “strict” standard curve datasets, these extreme values are excluded; 452 

in “relaxed” standard curve datasets, they are extrapolated outside the standard curve range. 453 

There are several techniques currently used to handle these values: list-wise deletion, pair-wise 454 

deletion, multiple imputation (extreme values replaced with multiply imputed values), and 455 

winsorization (extreme values replaced with the most extreme value on the standard curve). 456 

Landau and colleagues (2019) applied each of these four techniques to a strict and a relaxed 457 

dataset, resulting in eight total datasets. Additionally, they compared the reliability of samples 458 

taken in the morning compared to the evening, given evidence of diurnal variation in CRP (Out 459 
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et al., 2012). The average two-day Pearson r was .49 for morning samples and .60 for evening 460 

samples, suggesting that evening samples might be more stable. Winsorization of extreme values 461 

resulted in the highest temporal stability, regardless of time of day (mean winsorized morning r = 462 

.61, mean winsorized evening r =  .77, mean nonwinsorized morning r = .45, mean 463 

nonwinsorized evening r =  .54) or whether the dataset was strict or relaxed (mean winsorized 464 

strict r = .70, mean winsorized relaxed r = .68, mean nonwinsorized strict r = .47, mean 465 

nonwinsorized relaxed r = .52). On average, relaxed datasets had higher stability than strict 466 

datasets (mean r = .56 vs. .52). However, it is important to always consider data management 467 

techniques in the context of one’s specific dataset. For example, winsorization might be less 468 

appropriate when there are many extreme cases in a dataset. Further, the decision to modify 469 

observed values should always involve contemplation about how “extreme” values are defined, 470 

the likelihood that they are valid (not the result of measurement error), and the influence 471 

“extreme” values would have on planned analyses (e.g., assumptions of normality, sensitivity to 472 

outliers). 473 

It will come as no surprise that, in addition to statistical procedure, measurement 474 

procedure can influence temporal stability as well. In addition to the actual method of data 475 

collection (e.g., specific self-report measure, particular imaging scanner model), some biological 476 

variables can be measured from different sources. For example, inflammatory proteins most 477 

frequently are measured via assaying blood samples (Moriarity et al., 2020a; Muscatell et al., 478 

2016), but salivary measures have been increasing in popularity because they are less expensive 479 

and invasive than blood-based methods. However, the utility and comparability of these methods 480 

has been questioned as salivary markers of inflammation might reflect local, rather than 481 

systemic, immune function (Riis et al., 2015). Out and colleagues (2012) made an important 482 
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contribution to this discussion by comparing the one- and two-year retest reliabilities of both 483 

plasma and salivary measures of CRP in a sample of adult women. Plasma CRP had higher one-484 

year retest reliability than saliva CRP between years 2 and 3 (r = .70 vs. .57), but lower 485 

reliability between years 1 and 2 (r = .53 vs. .61). Plasma CRP also had higher two-year 486 

reliability (r = .58 vs. .46). Thus, results indicate comparable, but not identical, one and two-year 487 

retest stabilities when using these two methods to measure CRP.  488 

Another important factor to consider when assessing temporal stability is the role of 489 

human development. Particularly for youth undergoing drastic growth and developmental 490 

changes, it is plausible that temporal stabilities of many biological variables will differ compared 491 

to adults. Riis and colleagues (2014) extended the previous study to a sample of adolescent girls 492 

using a similar design (i.e., 3 yearly measurements of plasma and saliva inflammatory analytes). 493 

This study assessed nine cytokines, but did not measure CRP, so results cannot be directly 494 

compared. Controlling for age, the average year 1 to year 2, year 2 to year 3, and year 1 to year 3 495 

reliabilities were higher for serum compared to saliva (average rs = .61 vs .30, .33 vs. .25, and 496 

.40 vs. .34, respectively). However, when comparing the stability of individual proteins, a more 497 

complex picture emerged. One-year retest reliability was uniformly higher for plasma between 498 

years 1 and 2 (rs = .39 - .75 vs. .21 - .38). However, this discrepancy was less consistent between 499 

years 2 and 3 in which plasma reliability was higher for only four of the seven analytes (plasma 500 

rs = .10 - .54; saliva rs = .09 - .36) and for two-year reliability, for which saliva reliability was 501 

higher for four of the analytes (plasma rs = .16 - .57; saliva rs = .19 - .46). Thus, although these 502 

two studies suggest that serum measures of inflammation might be more stable than salivary 503 

measures, there might be important protein-level differences in ideal measurement methods. 504 

Also, the mouth is home to a complex microbiome that might introduce more confounding 505 
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factors compared to circulating blood (Giannobile et al., 2009). Thus, future research 506 

establishing best practices for salivary methods of collection might find different estimates of 507 

temporal stability. 508 

Another popular way to quantify temporal stability is intra-class correlation coefficients 509 

(ICCs), which assess the proportion of total variance (between-person + within-person) that is 510 

attributable to between-person differences. Thus, higher ICCs indicate less relative within-person 511 

variability and greater temporal stability. Conventionally, ICCs less than .40 are considered poor, 512 

between .40 and .59 are considered fair, between .60 and .74 are considered good, and above .75 513 

are considered excellent indicators of temporal stability (Cicchetti, 1993). An important 514 

distinction between ICCs and retest reliability indexed by Pearson’s r is that correlations 515 

primarily reflect rank-order stability (i.e., an individual will have the same relative ranking in a 516 

sample at Time 1 and Time 2), whereas ICCs reflect rank-order stability and mean-level changes 517 

between time points. Thus, ICCs are a preferable measure when evaluating how stable a given 518 

score is over time. 519 

Continuing the discussion of inflammation, Shields and colleagues (2019) reported ICCs 520 

(in their supplemental material) for seven different salivary inflammatory proteins (CRP, IL-6, 521 

IL-8, IL-18, IL-1β, TNFα, MCP). They report stability estimates for two different durations: 120 522 

minutes apart during the same testing session (“short-term reliability”) and an 18-month follow-523 

up (“long-term stability”). Importantly, testing stability of salivary analytes within the same 524 

testing session can help identify how many measurements of these proteins would be necessary 525 

to achieve a specific level of reliability. Short-term reliability ICCs ranged from .37 (for IL-8) to 526 

.80 (for CRP). To reach a goal short-term reliability of r = .80 using the Spearman-Brown 527 

prophecy formula, between one (CRP) and four measurements (IL-8 and IL-18) were needed. 528 
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The number of measurements needed to reach a goal short-term reliability indexed by ICCs was 529 

not reported. ICCs were low for all 7 proteins at the 18-month follow-up (all ICCs < .28), 530 

suggesting lower temporal stability of salivary inflammatory proteins using ICCs compared to 531 

Pearson’s r. Conceptually, this indicates that salivary inflammatory proteins might be more 532 

stable in terms of their person-level rank-order than their actual value. 533 

Given the relative expense of much biological psychiatry research (e.g., neuroimaging), 534 

many studies are cross-sectional and prospective studies typically have small sample sizes. Thus, 535 

meta-analyses pooling the results of multiple studies together have the potential to be very useful 536 

in investigating the temporal stability of various measures. Elliot and colleagues (2020) 537 

evaluated temporal stability of task-related fMRI measures in regions of interest (ROIs) using a 538 

meta-analysis of 90 substudies (N = 1,008 and 1,146 ICC estimates). When selecting articles, the 539 

authors noticed that several of the studies reported thresholded ICCs (i.e., only reported ICCs 540 

above a threshold, comparable to only reporting effect sizes for results with p < .05). Due to 541 

concerns this might inflate estimates of reliability, meta-analyses were conducted separately for 542 

studies reporting unthresholded vs. thresholded ICCs. These concerns were supported by results 543 

showing that the average ICC for unthresholded results (77 substudies) was poor (mean ICC = 544 

.397; 95% CI, .330 - .460), whereas the average stability for tasks in thresholded substudies (13 545 

substudies) was moderate (mean ICC = .705; 95% CI, .628 - .768). Further, a moderation 546 

analysis including all substudies confirmed that the decision to report thresholded ICCs was 547 

associated with significantly higher ICCs. Importantly, test-retest interval (the duration between 548 

the two points of measurement) was not found to be a significant moderator of temporal stability, 549 

although the authors do not provide information on the average test-retest interval or variability 550 

in the intervals between studies. The authors highlight several methodological limitations of their 551 
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meta-analysis (e.g., different, potentially outdated scanners, different pre-processing and analysis 552 

pipelines).  553 

These results suggest lower than ideal temporal stability for the study of individual 554 

differences. Importantly, the authors highlight that these tasks were created to robustly result in 555 

group-level changes, not to assess between-person differences in these changes. Therefore, the 556 

problem is not necessarily in the measures, but how researchers have extended their use to 557 

research questions they were not built to address. It also is important to highlight that this study 558 

only investigated ROIs. Similar analyses examining whole brain patterns might be more 559 

temporally stable. Additionally, some common ROIs not included in this paper (e.g., left nucleus 560 

accumbens and right anterior insula activity) have better temporal stability (e.g., ICC > .5) at 561 

large intervals (> 2.5 years) during the monetary incentive delay task included in Elliot et al. 562 

(2020) (Wu et al., 2014). In response to Elliot and colleagues (2020), Kragel et al. (2020, note 563 

this is a pre-print that has not undergone peer review) describe nine recent studies demonstrating 564 

strong short-term stability (i.e., less than five weeks) for task-based fMRI measures. They 565 

conclude that studies aggregating information across multiple brain regions (rather than ROIs) 566 

and/or aggregation across similar tasks, with larger samples, more data per participant (i.e., more 567 

time in the scanner), and shorter retest intervals paint a more promising picture of temporal 568 

stability for fMRI task measures than Elliot et al. (2020). Thus, further work is needed to identify 569 

best practices for individual differences research using various fMRI measures. 570 

Recall that measures taken across multiple time points for multiple people have three 571 

sources of variability: between-person, within-person, and measurement error. Generalizability 572 

theory (Shavelson and Webb, 1991) is an extension of these principles that estimates what 573 

proportion of a single assessment is generalizable to other time points by separating variance due 574 



Moriarity 26 

 

 

to stable individual differences, measurement occasions, and the interaction between the two. 575 

Results of generalizability analyses then can be used to inform the design of later studies with the 576 

goal of achieving a desired reliability. Segerstrom and colleagues (2014) applied this theory to 577 

investigate how many days of sampling would be needed to reliably characterize between-person 578 

differences and within-person changes in three cortisol metrics: diurnal mean, diurnal slope, and 579 

area under the curve (AUC) in two separate samples. Sample 1 consisted of young adults who 580 

provided five cortisol samples per day, for three consecutive days, across five separate occasions 581 

(mean time after previous occasion; Time 2: 44 days, Time 3: 57 days, Time 4: 36 days, Time 5: 582 

29 days). Results indicated that three days were necessary for adequate reliability to facilitate 583 

individual differences research (defined as r = .60 in this study) for the diurnal mean, four days 584 

for the AUC, and 11 days for diurnal slope. Further, reliable measurement of within-person 585 

changes would require three days of data for the mean, four for AUC, and eight for slope. 586 

Correlations comparing slopes calculated with 2, 3, and 4 time points per day suggested that 587 

collecting two samples per day (taken during the morning and evening) were excellent at 588 

reproducing slope estimates using four samples (r = .97), suggesting that collecting more than 589 

two samples per day does not substantively improve measurement. To evaluate whether these 590 

results replicate in a demographically different sample, a second study was conducted in older 591 

adults that resulted in comparable estimates. These results suggest that collecting two samples 592 

per day for several days will provide more reliable estimates than collecting more samples, but 593 

across fewer days.  594 

Temporal Specificity 595 

In addition to temporal stability, temporal specificity of effects is integral to advance 596 

longitudinal research. To illustrate this, consider the following studies of inflammation as a risk 597 
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factor for depression. Miller and Cole (2012) reported that CRP predicted depression symptoms 598 

at a six-month follow-up, but only in female adolescents exposed to childhood adversity. 599 

Gimeno et al. (2009) found that CRP and IL-6 predicted depression symptoms 12 years in the 600 

future. However, neither van den Biggelaar et al. (2007; five years of annual follow-ups) nor 601 

Stewart, Rand, Muldoon, and Kamarck (2009; six-year follow-up) found significant associations 602 

between IL-6 and future depression symptoms, but van der Biggelaar and colleagues found that 603 

CRP predicted future depression. Further, Copeland and colleagues (2012) did not find that CRP 604 

predicted future depression in a sample of adolescents with up to nine assessments over a 12-605 

year period. Although there might be (and likely are) many moderators influencing this 606 

heterogeneity in results, time to follow-up is a plausible candidate that could inform design of 607 

future, and interpretation of past, studies.  608 

Moriarity and colleagues (2019) explored this possibility in a sample of 201 adolescents 609 

with a baseline blood draw and a total of 582 assessments of depression symptoms (time to 610 

follow-up ranged from .07 – 30.49 months). Using hierarchical linear models, they tested main 611 

effects models of five inflammatory proteins on change in depression symptoms as well as five 612 

exploratory models testing interactions between the five biomarkers, sex, and time to follow-up. 613 

The only protein with a significant unconditional main effect was CRP; however, three of the 614 

four remaining proteins demonstrated significant three-way interactions. Specifically, both IL-6 615 

and TNFα had stronger, more positive associations with change in depression symptoms as time 616 

to follow-up increased, but only for females (e.g., Figure 1). Conversely, IL-8 had a stronger 617 

association with change in depression symptoms for males as time to follow-up increased, but 618 

the association was negative. These results highlight how associations might not replicate 619 

between samples with different demographic characteristics (e.g., sex) or different intervals 620 
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between assessments. This line of inquiry might be particularly important during adolescence, 621 

which is both a time of elevated risk for first onset of many psychopathologies (e.g., depression; 622 

Cummings et al., 2014) as well as a time of rapid social, biological, and psychological 623 

development.  624 

The rise in popularity of intensive longitudinal designs allows for a wealth of new 625 

opportunities to investigate temporal specificity on a smaller time scale. For example, Graham-626 

Engeland and colleagues (2018) measured serum levels of seven inflammatory proteins 627 

(combined into an inflammatory composite) and CRP (analyzed individually) after a 14-day 628 

ecological momentary assessment (EMA) protocol. Before starting the EMA protocol, 629 

participants completed questions about recalled positive and negative affect “over the past 630 

month”. Then, participants completed questions about experienced positive and negative affect 631 

five times per day for 14 days leading up to the blood draw. Neither the inflammatory composite 632 

nor CRP were significantly predicted by positive or negative affect “over the past month” or 633 

aggregated positive or negative affect over the 14-day EMA protocol. However, when the affect 634 

variables were separated by week, Week 2 (closest to the blood draw), but not Week 1, negative 635 

affect significantly predicted the inflammatory composite variable. Exploratory analyses found 636 

that the association between negative affect and inflammation consistently increased in strength 637 

as the lag between measurements shortened. Thus, these two studies illustrate how it is possible 638 

to leverage longitudinal studies of different time scales to identify whether risk factors for 639 

psychopathology operate on a proximal or distal time scale, providing important insight to study 640 

design and intervention efforts.  641 

Artificial Effect Size Deflation and Power 642 
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 As reviewed in the conceptual portion of this paper, all of the physiometric examples 643 

reviewed thus far have implications for model performance; however, some researchers have 644 

empirically tested the relationship between physiometrics and effect size/power in biological 645 

psychiatry. For example, Hajcak and colleagues’ (2017) paper on how internal consistency of 646 

ERN changes as a function of trials completed in two groups of participants with, and without, 647 

generalized anxiety disorder (reviewed above) also tested how between-group effect sizes were 648 

related to internal consistency. Cohen’s d increased almost parallel to increases in internal 649 

consistency as the number of trials increased (r = .94). Given that two primary goals of 650 

biological psychiatry are understanding i) group differences between those with and without 651 

mental illness, and ii) the between-person variability in within-person effects contributing to 652 

psychiatric risk, resilience, and treatment, this is noteworthy. 653 

 Simulation studies present a powerful option to evaluate the state of current measurement 654 

practices. Segerstrom and Boggero (2020) used 212 study designs included as part of a meta-655 

analysis (Boggero et al., 2017) on the relationship between various psychosocial correlates and 656 

cortisol awakening response to investigate the probability of misestimates using these data. 657 

100,000 data sets were simulated for each study design with sample sizes and reliability 658 

estimates extracted from the original studies. Boggero and colleagues (2020) found a meta-659 

analytic effect size of less than r = 0.10, which was used as the “true” effect size for the purposes 660 

of the simulation study. Two types of misestimates were assessed: 1) sign errors (i.e., when the 661 

association was negative, instead of positive like the meta-analytic effect); and 2) magnitude 662 

errors (i.e., when the estimate was more than .10 away from the meta-analytic effect). Consistent 663 

with literature reviewed above, more days of sampling in cortisol studies are associated with 664 

higher reliability. More days of sampling (and, by extension, reliability) was, in turn, consistently 665 



Moriarity 30 

 

 

negatively correlated with both sign and magnitude errors in the simulations. Given that results 666 

found that around 20% of all simulations resulted in sign errors, and nearly 40% in magnitude 667 

errors, this study highlights increased cortisol sampling as a way to increase reliability and 668 

overall study quality. 669 

The Promise of Biological Psychiatry 670 

 Biological psychiatry has the potential to enhance both physical and mental health 671 

through the investigation of the reciprocal associations between the body and mind. However, 672 

this potential only can be realized with carefully crafted theory and rigorous methodology. Many 673 

have argued that the field has fallen short of its promise to meaningfully impact psychiatric 674 

classification, diagnosis, prevention, and treatment so far (Kapur et al., 2012; Miller, 2010; 675 

Venkatasubramanian and Keshavan, 2016). One important reason for this may be that a lack of 676 

sufficient attention to key measurement properties of biological variables has constrained the 677 

utility of these data in statistical modeling, and thus, inference generation, despite rapid 678 

technological advances allowing for more precise data acquisition in many biological subfields.  679 

 Although the physiometric characteristics covered in this review are far from exhaustive, 680 

we would like to reiterate five steps that would improve biological psychiatry research: 1) 681 

thoughtful investigation of the dimensionality of complex biological constructs in datasets 682 

including multiple indicators of these constructs; 2) standardized reporting of internal 683 

consistency when using aggregate measures; 3) careful consideration of the implications of 684 

method-specific variance; 4) standardized reporting of temporal stability, preferably calculated 685 

with the sample being analyzed or at least a reference to previous research with a similar time 686 

frame; and 5) increased exploration into the temporal specificity of associations between 687 

biological and behavioral phenomena. Further, it is imperative to keep in mind how the results of 688 
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these investigations might be contingent on other analytic choices (e.g., handling of extreme 689 

values; Landau et al., 2019) and sample characteristics (e.g., sex; Moriarity et al., 2019). 690 

A physiometric awakening in biological psychiatry would promote a wide array of 691 

benefits to the field and those whom this work is intended to benefit. Projects uninformed by 692 

basic measurement principles germane to their study methods risk inflating the noise-to-signal 693 

ratio in statistical models. As a result, there is an increased risk for false-negatives and false-694 

positives, hindering the actual progress of the field as well as belief in its utility relative to the 695 

associated costs. Further, many standardized effect sizes between biological and psychological 696 

variables likely are biased downward due to less than ideal matching of measures to procedures 697 

and method specific variance, weakening the appearance of their practical implications. 698 

Thoughtful application of measurement principles can reduce error-related variability in future 699 

studies via improvement of both study design and statistical modeling, resulting in improved 700 

replicability of findings and less biased effect sizes.  701 

Moreover, physiometric studies can provide guidance about which variables have the 702 

most utility, under what research designs they operate well, and how to optimally model 703 

constructs of interest. To illustrate this, consider designing a study of experienced negative affect 704 

as a predictor of inflammatory and coagulatory markers in adolescents. Having read Nelson and 705 

colleagues (2011), you know that aggregating variables containing overlapping variance can 706 

accentuate the shared variance related to other variables, increasing power. You originally 707 

considered the same panel of biomarkers as Egnot et al. (2018), but you decided not to assay and 708 

analyze slCAM-1 and Lp(a) because neither loaded onto either of the two factors in their study. 709 

This decision saves you money, enabling recruitment of more participants, hiring additional 710 

staff, or purchasing other supplies. Additionally, because Engeland and colleagues (2018) found 711 
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that the association between negative affect and inflammation was stronger at shorter intervals, 712 

you might plan a one-week EMA protocol rather than a two-week protocol, saving money, time, 713 

and participant burden. However, instead of testing separate regressions for each day of negative 714 

affect, you could improve statistical rigor of this comparison by testing for moderations by time 715 

interval using multilevel models like Moriarity et al. (2019).  716 

In addition to improving study design, thoughtful application of various statistical 717 

approaches holds the potential to ameliorate physiometric issues in biological psychiatry. One 718 

example is structural equation modeling (SEM), a powerful tool for reducing the impact of poor 719 

reliability on statistical models. SEM allows the estimation of latent factors from the shared 720 

variance between items, removing measurement error associated with individual observed 721 

variables and accentuating shared variance between biomarkers of interest. However, SEM 722 

models require larger samples than traditional models. Thus, multi-study collaborations might be 723 

necessary to permit model testing for more expensive measures.  724 

As described in Perkins et al. (2017), many physiological variables of interest are 725 

associated with many different psychological constructs. Thus, when possible, researchers 726 

should carefully consider whether building statistical models that can isolate portions of variance 727 

relevant to one trait vs. another would be beneficial. However, we would like to underscore that 728 

the suitability of various variance isolation techniques is context dependent. As described above, 729 

variance removed from a variable always comes from the “true” and reliable variance, never 730 

from error variance. Thus, difference scores or predictors with variance partialled out for 731 

covariates are almost always less reliable and have a lower signal-to-error ratio (Lynam et al., 732 

2006). This is amplified when the predictors are highly correlated (Thomas and Zumbo, 2012). 733 

Finally, it also is critical to remember that difference scores (or predictors with variance 734 
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partialled out in multiple regression) are conceptually different than the raw variables. These 735 

interpretive concerns are more extreme with more heterogenous (lower internal consistency) 736 

measures, because it is more likely that the variance removed might only be associated with a 737 

subset of the components of the original variable.  738 

Additionally, most of this article has discussed physiometric work anchored in classical 739 

test theory. Future work could utilize generalizability theory, an extension of classical test theory 740 

described above in the review of Segerstrom et al. (2014). Alternatively, item response theory 741 

(IRT) estimates reliability for varying levels of a continuum rather than the entire range of a 742 

measure. Typically, IRT requires binary or polytomous indicators, but continuous response 743 

models (CRM) are an extension of IRT models that allow for continuous variables (Samejima, 744 

1973). Physiometric research utilizing these approaches might lead to useful insight for how to 745 

best collect and model biological data. 746 

Increasing the efficiency of study design and statistical modeling will improve the ability 747 

to accurately detect associations and their effect sizes. These advancements have the potential to 748 

smooth the transition from basic research to the improvement of interventions and policy via 749 

increasing confidence in results and the ability to gauge their utility. Importantly, with lower 750 

rates of false positives, there is a reduced chance that ineffective biological interventions may be 751 

explored that have little to no real-world utility.  752 

Fortunately, as reviewed above, some researchers are working to arm the rest of the field 753 

with this crucial information. As more physiometric work is published, the value of 754 

comprehensive reviews of this literature increases. Recently, Segerstrom (2020) and Gloger et al. 755 

(2020) published reviews of salivary and serum biomarker physiometrics, respectively, but many 756 
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more topics would benefit from a focused physiometric review (e.g., neuroimaging, ERP, heart 757 

rate variability). 758 

 However, it is critical to admonish the dangers of treating particular levels of 759 

physiometric characteristics as benchmarks to hit, without careful consideration of what they 760 

mean in relation to the constructs being studied. Several methodologists have warned that 761 

primarily focusing on creating measures with high internal consistency can result in the removal 762 

of items/components that contribute to lower internal consistency, but would help capture the 763 

true breadth of the construct of interest (Clark and Watson, 2019; Cronbach and Meehl, 1955). 764 

This sacrifices construct validity for higher internal consistency and faux-unidimensionality. 765 

Further, internal consistency increases as a function of the number of components included in its 766 

calculation, potentially resulting in larger, but not better, measures. Additionally, although there 767 

are many contexts in which high temporal stability can be beneficial, it is critical to avoid 768 

overvaluing components of larger constructs (e.g., brain regions for neuroimaging studies) with 769 

higher reliability. Rather, there should be reciprocal interplay between methodology and theory. 770 

 Creating a solid physiometric foundation for biological psychiatry is not without 771 

obstacles. First and foremost, biological variables often are more expensive to measure than 772 

psychological variables, some of which can be measured via self-report questionnaires 773 

administered online from the comfort of participants’ homes. Measurement research and 774 

construct validation are, by their nature, iterative processes, amplifying the associated cost of this 775 

work. However, it is crucial to appreciate that good physiometric research is an investment; it 776 

will result in increased statistical power and better study design in the future, saving money and 777 

time. This requires investment both on the part of researchers as well as funding agencies. 778 

Fortunately, there is a lot of important work that can be done with existing data sets. Any study 779 
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with repeated measures of a variable can estimate its temporal stability. Any study using an 780 

aggregate measure can assess the internal consistency of its components. In fact, there are many 781 

publicly available data sets that offer great opportunities for physiometric research (e.g., the 782 

Human Connectome Project; Van Essen et al., 2013). 783 

 Finally, this work can, at times, be statistically intensive and conceptually abstract. One 784 

of the strengths of biological psychiatry is that, by nature, it is an interdisciplinary pursuit with 785 

experts along the biology—psychology spectrum. Collaboration with statisticians and 786 

measurement specialists can serve as a catalyst for the efficient, high-quality research that is 787 

needed for biological psychiatry to reach its full academic, clinical, and policy-informing 788 

potential. 789 

Conclusion 790 

 It is important to end on a clarification that the issues highlighted in this article should not 791 

be received with apprehension or pessimism. Rather, it is an invitation to ask new questions of 792 

the data collected to help the field of biological psychiatry realize its potential. Biological 793 

psychiatry has been criticized for falling short of its considerable promise in advancing 794 

knowledge about the interplay between biology and behavior in ways that will translate to 795 

substantive impact on clinical outcomes (Kapur et al., 2012; Miller, 2010; Venkatasubramanian 796 

and Keshavan, 2016). One addressable barrier to meaningfully advancing biological psychiatry 797 

is an understanding and appreciation of measurement characteristics for biological variables. By 798 

leveraging existing data sets and prioritizing funding for physiometric research, it is possible to 799 

advance current methods to allow for more informative and replicable studies that will provide 800 

greater clarity into what areas of research offer the greatest promise to make meaningful impacts 801 

on mental health, and how best to integrate them into intervention efforts. 802 
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 807 

Figure 1. Temporal specificity of Log IL-6 predicting change in depression symptoms by sex. 808 

This figure was first presented in Moriarity et al. (2019). Note: IL = interleukin, CDI = 809 

Children’s Depression Inventory 810 
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