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A B S T R A C T

Most research testing the association between inflammation and health outcomes (e.g., heart disease, diabetes,
depression) has focused on individual proteins; however, some studies have used summed composites of in-
flammatory markers without first investigating dimensionality. Using two different samples (MIDUS-2: N ¼ 1255
adults, MIDUS-R: N ¼ 863 adults), this study investigates the dimensionality of eight inflammatory proteins (C-
reactive protein (CRP), interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), fibrinogen, E-selectin, and
intercellular adhesion molecule (ICAM)-1) and compared the resulting factor structure to a) an “a priori”/tau-
equivalent factor structure in which all inflammatory proteins equally load onto a single dimension (comparable
to the summed composites) and b) proteins modeled individually (i.e., no latent variable) in terms of model fit,
replicability, reliability, and their associations with health outcomes. An exploratory factor analysis indicated a
two-factor structure (Factor 1: CRP and fibrinogen; Factor 2: IL-8 and IL-10) in MIDUS-2 and was replicated in
MIDUS-R. Results did not clearly indicate whether the empirically-identified factor structure or the individual
proteins modeled without a latent variable had superior model fit, but both strongly outperformed the “a priori”/
tau-equivalent structure (which did not achieve acceptable model fit in any models). Modeling the empirically-
identified factors and individual proteins (without a latent factor) as outcomes of medical diagnoses resulted
in comparable conclusions. However, modeling individual proteins resulted in findings more robust to correction
for multiple comparisons despite more conservative adjustments. Further, reliability for all latent variables was
poor. These results indicate that modeling inflammation as a unidimensional construct equally associated with all
available proteins does not fit the data well. Instead, individual inflammatory proteins or, potentially (if empir-
ically supported and biologically-plausible) empirically-identified inflammatory factors should be used in
accordance with theory.
1. Introduction

Atypical inflammatory processes are gaining support as a trans-
diagnostic feature across many medical and psychiatric conditions. For
example, elevated inflammation has been observed in patients with
coronary heart disease (Pai et al., 2004), diabetes (Wang et al., 2013),
depression (Osimo et al., 2019), and is a proposed mechanism between
rheumatoid arthritis (a disease characterized by chronically high
inflammation) and secondary adverse medical conditions (e.g., cardio-
vascular disease; Sattar et al., 2003). Specific immunological theories
differ between disease states (e.g., inflammation-induced sickness
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behavior/depression symptoms to conserve resources and avoid further
physical or emotional stress (Dantzer and Kelley, 2007); acceleration of
atherogenesis in rheumatoid arthritis leading to heart disease (Sattar
et al., 2003)), prompting collection and analysis of inflammatory data in
many fields beyond immunology. Given the complexity of this system
and its relevance across subfields, it is imperative to critically evaluate
current methodologies to ensure optimally-designed and powered
studies (Moriarity and Alloy, 2021).

It is common to measure several inflammatory proteins and test them
all as independent or dependent variables. Although this facilitates ease
of interpretation and can identify protein-specific pathways, maximizing
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specificity, this approach also results in several complications. First,
many theories and hypotheses are described in terms of “inflammation”
(e.g., Dooley et al., 2018; Miller et al., 2009; Moriarity et al., 2018;
Slavich, 2020), not individual proteins, underscoring a disconnect be-
tween theory and analysis. Further, there are concerns about the degree
to which any individual protein can be considered a true “biomarker” of
inflammation (Konsman, 2019). This approach also invites concerns
about the need to adjust for multiple comparisons. To address these
concerns, some studies (e.g., Chat et al., 2021; Moriarity et al., 2020; Tait
et al., 2019; Vinhaes et al., 2021) have used an “a priori” composite
variable consisting of the sum or average of several standardized in-
flammatory proteins as a measure of general inflammation. There is
theoretical rationale for believing that different inflammatory proteins
are jointly influenced by a shared, latent, inflammatory process. For
example, they are all known to be broadly involved in the initiation and
maintenance of, or recovery from, an inflammatory stimulus including
tissue damage or infection, sometimes referred to as the inflammatory
cascade (Cavaillon and Adib-Conquy, 2002). Additionally, as part of this
cascade, many inflammatory proteins are directly involved in the
up/down-regulations of others. For example, fibrinogen influences the
induction of cytokine/chemokine expression (e.g., IL-6 and TNF-α) via
MAC-1 signaling (Amrani, 1990; Davidson, 2013).

However, given the many different component processes of inflam-
mation (e.g., acute phase reaction, upregulation of proinflammatory
proteins, activation of the vascular and endocrine systems, neutrophil
migration to the site of injury, fibrinolysis, apoptosis, coagulation, and
the induction of regulatory anti-inflammatory processes to return to
homeostasis (Gruys et al., 2005)), it is plausible that a unidimensional
model does not best represent the complexity of this system. Assuming
unidimensionality is particularly worrisome with multifaceted processes
like inflammation. If different dimensions have different associations
with outcomes of interest, aggregating these dimensions could wash out
meaningful effects. Additionally, data aggregation uninformed by
investigating dimensionality can result in increased measurement error,
which, on average, attenuates effect sizes and reduces power (Segerstrom
and Boggero, 2020). Further, this approach makes the unlikely assump-
tion that all inflammatory proteins are equally associated with a
higher-order inflammatory process (in what is referred to as a “tau-e-
quivalent” model).

It is also important to note that many inflammatory proteins are
pleotropic and can contribute to different, even opposing (e.g., pro- and
anti-inflammatory), processes under certain conditions. For example,
interleukin (IL)-6 typically is described in terms of proinflammatory
functions (mediated by classic signaling), but also has some anti-
inflammatory functions (mediated by trans-signaling) (Scheller et al.,
2011). Further, it is known that the baseline concentrations of various
proteins in circulation are partially determined by multiple cellular and
tissue sources (i.e., proteins produced by myokines might have higher
intercorrelations than proteins produced by different cell types). Conse-
quently, both empirical investigation and careful consideration of bio-
logical plausibility are necessary to evaluate the appropriateness and
optimal strategies for developing an inflammatory composite (Moriarity,
2021). Indeed, it is important to emphasize that regardless of empirical
support, inflammatory composite variables should not be used unless
they are biologically plausible.

Several published studies have investigated the dimensionality of
inflammatory proteins. To our knowledge, only one other study has
tested the dimensionality of inflammatory proteins in a non-medical
sample. Egnot et al. (2018) tested the dimensionality of several inflam-
matory and coagulatory proteins (C-reactive protein (CRP), IL-6, fibrin-
ogen, intercellular adhesion molecule (ICAM)-1, D-dimer, Lipoprotein
(Lp)-a, and pentraxin (PTX)-3). It was concluded that CRP, IL-6, and
fibrinogen loaded onto an inflammatory factor and D-dimer and PTX-3
loaded onto a factor indicative of a thrombogenic process and the
concomitant vascular perturbation. ICAM-1 and Lp-a did not load onto
any observed factors.
2

A few other studies have conducted factor analyses of inflammatory
proteins in medical samples, which are important to compare to the re-
sults above to evaluate the generalizability of the dimensionality of
inflammation. If the structure of inflammation differs as a function of
medical status, this would suggest different inflammatory processes and a
need for different methods in different samples. In a sample of acute
coronary syndrome patients, Tziakas et al. (2007) tested the dimen-
sionality of CRP, fibrinogen, HDL cholesterol, IL-10, IL-18, and ICAM-1
and found three inflammatory factors: a “systemic inflammation” factor
consisting of CRP and fibrinogen, a “local inflammation—endothelial
dysfunction” factor consisting of IL-18 and ICAM-1, and an “anti-in-
flammatory factor” consisting of IL-10 and HDL cholesterol. Koukkunen
et al. (2001) conducted an exploratory factor analysis (EFA) on CRP,
fibrinogen, IL-6, tumor necrosis factor-α (TNF-α), troponin T, and crea-
tine kinase MB mass in a sample of adults with unstable angina pectoris.
This study described two factors: an “inflammation factor” including
CRP, fibrinogen, and IL-6, and an “injury” factor including TNF-α,
troponin T, and creatine kinase MB mass. Finally, Sakkinen et al. (2000)
conducted an EFA on 21 different biological characteristics (including
several inflammatory proteins) in participants with insulin resistance
syndrome. Six biomarkers (fibrinogen, CRP, plasmin-α2-antiplasmin,
Factor VIIIc, Factor IXc, and fibrin fragment D-dimer) loaded onto what
was interpreted as an inflammation factor. HDL cholesterol was tested,
but was not found to load onto a factor with other inflammatory markers,
as reported by Tziakas et al. (2007).

Some notable similarities between these studies emerge; specifically,
1) CRP, fibrinogen, and IL-6 frequently load onto the same factor
(potentially due to their interactive role in the acute phase reaction)
when these proteins are included in the dataset and 2) TNF-α and ICAM-1
never loaded onto the same factor as CRP, fibrinogen, and IL-6. It is also
worth noting that two of these four studies found multiple inflammation
factors, suggesting that inflammation might be best represented as a
multidimensional process. Thus, these studies do not support the use of
unidimensional composites created by summing standardized values of
inflammatory proteins in a dataset (consequently, giving all of the pro-
teins equal weight in the composite) without investigating the empirical
structure of the data first. McNeish and Wolf (2020) provide a thorough
review of concerns about using sum scores in this manner when the
structure of the data is more complex. Additional work must be done to
test and replicate the structure of inflammation in populations of interest
(e.g., community samples, cancer patients, individuals with depression)
to determine the best way to aggregate different inflammatory proteins
(and whether this is appropriate). Additionally, none of these studies
tested the same panel of inflammatory proteins. Thus, the direct repli-
cability of the structure of an array of inflammatory proteins has never
been tested.

1.1. The present study

This study sought to critically evaluate a tau-equivalent “a priori”
factor structure of inflammatory proteins (comparable to the aggregates
used in previously published studies; e.g., Chat et al., 2021; Moriarity
et al., 2020; Tait et al., 2019; Vinhaes et al., 2021) by utilizing standard
aggregate-creation procedures. First, the structure of eight inflammatory
proteins was investigated in a sample of adults. Replicability of this
structure was tested in a second sample of similarly-aged adults and
model fit was compared to the “a priori”/tau-equivalent model. Struc-
tural equation modeling was used in this replication dataset to compare
1) the empirically-identified structure, 2) the “a priori”/tau-equivalent
structure, and 3) modeling the inflammatory proteins individually
(without a latent variable) as outcomes of several different criterion
variables (i.e., heart disease, diabetes, asthma, depression, thyroid dis-
ease, peptic ulcer disease, and arthritis) with respect to model fit and
results. The authors would like to reiterate that the purpose of this study
is not to argue for inflammatory aggregates (doing so requires many
different types of data to test characteristics such as structural invariance
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across acute stress responses, structural invariance across disease states
(e.g., illnesses characterized by acute vs. chronic inflammatory abnor-
malities), and short- and long-term stability. Rather, the goal of this
article is to evaluate whether the tau-equivalent “a priori”/tau-equivalent
approaches used in the literature can pass several of the preliminary steps
of aggregate creation (e.g., replicability, comparability to explorations of
factor structure, predictive validity) and to explore alternatives.

2. Methods

2.1. Participants and procedure

Participants were selected from two pre-existing datasets: Midlife in
the United States (MIDUS)-2 and MIDUS-Refresher (MIDUS-R). MIDUS-2
(Ryff et al., 2017) consisted of 1255 (Mage ¼ 55.42 years, 50% female,
78% White) participants between the ages of 25 and 75 who were fluent
in English and volunteered to participate in a biomarker collection that
included a sera assessment of eight inflammatory proteins (C-reactive
protein (CRP), interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α
(TNF-α), fibrinogen, E-selectin, and intercellular adhesion molecule
(ICAM)-1). MIDUS-R (Weinstein et al., 2017) was designed to parallel the
procedure of the MIDUS-2 study, and included 863 adults (Mage¼ 53.53
years, 50% female, 87% white).

2.2. Measures

2.2.1. MIDUS-2 and MIDUS-R
Inflammatory proteins. Fasting blood draws were collected be-

tween 6:00 and 8:30 a.m. for both MIDUS-2 and MIDUS-R. Blood was
centrifuged and stored in a �60 �C to �80 �C freezer. Samples were
shipped to the MIDUS Biocore Lab on dry ice, where they were stored at
�65 �C until assayed. C-reactive protein (CRP) originally was analyzed in
plasma via BNII nephelometer (Dade Behring Inc.). Samples falling below
the assay range for this method were re-assayed using immunoelec-
trochemiluminescence using a high-sensitivity array kit (Meso Scale Di-
agnostics (MSD)). Comparisons of these two methods showed results to
be highly correlated. Beginning in 2016, all participants (150 from
MIDUS-R) had CRP assayed using the MSD platform. Corrections to ac-
count for these changes were applied before the data were made publicly
available. Fibrinogen was measured using the same BNII nephelometer.
E-Selectin and Intercellular Adhesion Molecule (ICAM)-1 were both
measured using ELISA assays (R&D Systems, Minneapolis, MN). Lot-to-
lot changes in both E-Selectin and ICAM-1 assays were made
throughout the course of the study and adjusted prior to the data being
made publicly available to the public. Cytokines (interleukin (IL)-6, IL-8,
IL-10, and tumor necrosis factor alpha (TNF-α)) were quantified simul-
taneously using a MSD V-plex Custom Human Cytokine Kit, and MSD
Sector Imager. E-Selectin and ICAM-1 values outside of the detectable
range (LLOD ¼ <0.1 ng/mL and <45 mg/L, respectively) were set at
0.09 ng/mL and 44 ng/mL, respectively. MIDUS documentation indicates
that none of the other proteins had values outside of the detectable range.
Assay ranges and variability for all proteins can be found in the MIDUS
documentation available online. Bivariate correlations between the
proteins in MIDUS-2 and MIDUS-R are provided in Supplemental Ta-
bles 1 and 2, respectively.

C-reactive protein. CRP is a pentameric protein, generalized marker
of inflammation, and an acute phase reactant upregulated by IL-6
(Davidson, 2013). CRP is primarily synthesized by the liver and can
activate the complement system, promoting phagocytosis, and facilitate
antibody/antigen binding.

Fibrinogen. Fibrinogen is a glycoprotein complex and acute phase
protein synthesized in the liver and upregulated by IL-6. It is involved in
creating blood clots, regulating thrombin, and influencing leukocyte
migration (Amrani, 1990; Davidson, 2013). Additionally, it influences
the induction of cytokine/chemokine expression (e.g., IL-6 and TNF-α)
via MAC-1 signaling. Breakdown products of fibrinogen (e.g., D-dimers)
3

stimulate the release of several inflammatory proteins including CRP and
IL-6 (Davidson, 2013).

E-selectin. E-selectin is a selectin cell adhesion molecule expressed by
endothelial cells and activated by cytokines. Local release of IL-1 and
TNF-α induces over-expression of E-selectin, which then recruits leuko-
cytes to the site of injury (Imhof and Dunon, 1995).

Intracellular Adhesion Molecule-1. ICAM-1 increases rapidly in
response to TNF-α and IL-1 and influences neutrophil adhesion (Divietro
et al., 2001) and recruitment of macrophages. It is expressed by the
vascular endothelium, macrophages, and lymphocytes. There is also ev-
idence that ICAM-1 is involved in the secretion of TNF-α (Etienne--
Manneville et al., 1999).

Interleukin-6. IL-6 is responsible for stimulating acute phase protein
synthesis in the liver, production/trafficking of neutrophils and prolif-
eration of B cells (Davidson, 2013; Fielding et al., 2008). It is produced by
a wide variety of cells including liver cells, macrophages, osteoblasts, and
monocytes (Davidson, 2013). In addition to its pro-inflammatory role, it
also has anti-inflammatory properties and is involved in the regulation of
TNF-a and IL-10 (Scheller et al., 2011).

Interleukin-8. IL-8 (also known as neutrophil chemotactic factor) is a
chemokine produced by macrophages and other types of cells (e.g.,
epithelial cells, smooth muscle cells in the airway, and endothelial cells)
(Hedges et al., 2000). It is a key protein promoting neutrophil adhesion
(both in terms of adhesion promotion and inhibition) and migration to-
ward injury sites via chemotaxis, and also stimulates phagocytosis
(Divietro et al., 2001; Dixit and Simon, 2012; Luscinskas et al., 1992).

Interleukin-10. IL-10 is predominantly produced by monocytes and
lymphocytes and, primarily, is an anti-inflammatory cytokine that reg-
ulates pro-inflammatory proteins (e.g., TNF-a, IL-8, IL-6) as well as
enhancing B-cell survival and antibody production (Kessler et al., 2017;
Sun et al., 2009).

Tumor necrosis factor alpha. TNF-α is a predominantly proin-
flammatory cytokine primarily released by macrophages (in addition to
other cells such as lymphoid cells, adipose tissue, and mast cells) to re-
cruit other cells to activate immune processes (Olszewski et al., 2007).
Many proinflammatory functions of TNF-α are apoptotic (promotes
programmed cell death) in nature (Gough and Myles, 2020). TNF-α can
influence migration of neutrophil to injury sites (Smart and Casal, 1994)
and induces ICAM-1 (Burke-Gaffney and Hellewell, 1996).

Medical Status. Participants’ medical history was assessed on the
day of the study visit via interview. This interview found that 11.6/9.3%
of participants with complete biomarker data in these samples (MIDUS-
2/MIDUS-R, respectively) reported a history of heart disease, 12.2/
10.9% diabetes, 12.4/18.1% asthma, 24.0/34.4% depression, 12.5/
12.1% thyroid disease, 43.1/36.4% arthritis, and 5.2/5.2% reported
experiencing a peptic ulcer.

2.3. Analyses

All analyses were conducted in R 3.6.2 (R Core Team, 2013). Several
proteins were substantially skewed in both datasets. Instead of modifying
the data via transformation we elected to use modeling procedures robust
to non-normality (described below), in line with best practices (Wilcox
and Rousselet, 2018).

2.3.1. Exploratory factor analysis
Parallel analysis was used to determine the number of factors to retain

using EFA.dimensions (Connor, 2020). Unlike other factor retention
methods, parallel analysis allows for correction for the effects of sampling
error. Eigenvalues were generated using permutations of the raw dataset
to create eigenvalues that could be compared to the eigenvalues pro-
duced by the factor analysis on the dataset. When an eigenvalue gener-
ated from the factor analysis is higher than that generated from the
parallel analysis, it can be assumed that the eigenvalue represents a real
factor that accounts for more variance than a factor based on the per-
mutated data (Horn, 1965). Thus, the number of factors retained was



Table 1
Parallel analyses.

Factor # Eigenvalues Real Data Eigenvalues 95th % Random Data

1 1.905 1.169
2 1.302 1.101
3 1.050 1.059
4 .988 1.028
5 .941 1.004
6 .715 .980
7 .625 .956
8 .474 .922

Note: N ¼ 1231.

Table 2
Exploratory factor analysis (EFA) in MIDUS-2.

Factor 1 Factor 2

C-reactive Protein .77* -.01
Interleukin-6 .10 .06
Tumor Necrosis Factor-α .22 .28
Interleukin-8 -.04 .76*
Interleukin-10 .12 .43*
Fibrinogen .63* -.02
Intercellular Adhesion Molecule-1 .21 .12
E-selectin .17 .12
Correlation Between Factors .10
Proportion of Variance Explained .14 .11
Proportion of Variance Explained by Single Factor Solution .15

Note: N ¼ 1231, * ¼ substantially loaded onto the factor.
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determined by the number of eigenvalues for which the eigenvalue for
the raw data is higher than the eigenvalue that correspond to the 95th
percentile of the distribution of the permutated data eigenvalues
(consistent with EFA.dimensions defaults). Exploratory factor analyses
were conducted using lavaan in MIDUS-2 using the Geomin rotation to
allow for correlated factors (Rosseel, 2012). Models were estimated using
maximum likelihood estimation with robust standard errors (MLR) to
account for non-normality of the inflammatory proteins. Complex load-
ings (i.e., items loading onto more than one factor) would be allowed due
to the pleotropic nature of these biomarkers. Loadings at or above 0.30
were considered to load onto a factor. Given that, unlike the creation of
self-report items for a survey, it is unlikely and inadvisable that re-
searchers remove proteins that don't load onto a latent factor from the
dataset, there was no iterative process of dropping proteins below this
threshold and re-running the parallel analysis and EFA.

2.3.2. Confirmatory Factor Analysis/structural equation modeling
Confirmatory factor analyses (CFAs) and structural equation models

(SEMs) were estimated in MIDUS-R for the factor structure found in the
EFA from MIDUS-2. All models were conducted in lavaan (Rosseel,
2012). Models were estimated using maximum likelihood estimation
with robust standard errors (MLR) to account for non-normality of the
inflammatory proteins. The variance of latent variables was set to 1, all
latent means set to zero, and all factor loadings, unless otherwise noted in
the results, were freely estimated. Next, model fit of the
empirically-identified factor structure was compared to the “a prior-
i”/tau-equivalent unidimensional factor structure with the factor load-
ings of all proteins constrained to equality. In addition to interpretation
of standard goodness-of-fit indices (i.e., good fit indicated by compara-
tive fit index [CFI] � 0.95, root mean square-error of approximation
[RMSEA] � 0.06, and standardized root-mean-square residual [SRMR]
� 0.08, and non-significant chi-square test; Hu et al., 2009), AIC and BIC
will be compared between models. Unlike most other fit indices, AIC and
BIC can be directly compared, with lower values indicating preferable
model fit. Additionally, it is important to note that the chi-square test of
significance is over-powered in large sample sizes (Bollen, 1989). SEMs
also were conducted in MIDUS-R comparing the empirically-identified
structure, “a priori”/tau-equivalent structure, and individual inflamma-
tory proteins as outcomes of several criterion variables (heart disease,
diabetes, asthma, tuberculosis, thyroid disease, peptic ulcer disease, and
arthritis). Model fit and results were compared.

2.3.3. Reliability
Factor reliability was quantified via coefficient ω (Raykov, 2001)

using the R package semTools (Jorgensen et al., 2021) in MIDUS-2. Co-
efficient ω was selected over Cronbach's α because a) ω makes fewer and
more realistic assumptions compared to α and b) problems with mises-
timation of reliability are far less likely. For a more in-depth argument for
the adoption of ω over α as the new field standard refer to Dunn et al.
(2014).

3. Results

3.1. Exploratory factor analysis

The exploratory factor analysis was conducted using the 1231 com-
plete observations out of the total 1255 blood draws in MIDUS-2 (some
participants had missing data for some proteins and the models estimated
can't handle missing data). The parallel analysis (Table 1) indicated two
factors (i.e., two factors had eigenvalues greater than the corresponding
factors in the random data). The resulting EFA results can be found in
Table 2. CRP and fibrinogen loaded onto Factor 1 and IL-8 and IL-10
loaded onto Factor 2. No other proteins had a loading >0.3 on either
factor. These factors accounted for 14% and 11% of the total variance,
respectively. In comparison, a single factor model only accounted for
15% of the total variance.
4

In the empirically-identified structure, the inflammatory factor
including CRP and fibrinogen was interpreted to reflect shared variance
between these proteins involved in acute phase reaction processes
localized in the liver. Both CRP and fibrinogen are acute phase reactants
synthesized in the liver and upregulated in response to acute stress and
inflammatory challenges (Amrani, 1990; Davidson, 2013). Further,
breakdown products of fibrinogen (e.g., D-dimers) can upregulate CRP,
creating a positive feedback loop (Davidson, 2013). The second inflam-
matory factor, consisting of IL-8 and IL-10 was interpreted to reflect
shared variance between these proteins related to inflammatory pro-
cesses (both pro- and anti-inflammatory) particularly associated with
neutrophil activity (Korthuis et al., 1994). IL-8 can influence neutrophil
adhesion (Divietro et al., 2001), and stimulate neutrophils to migrate to
injury sites (Dixit and Simon, 2012). IL-10 serves as an important
mediator of neutrophil activity via regulation of proinflammatory cyto-
kines and CXC keratinocyte-derived chemokine molecules (e.g., IL-8;
Kessler et al., 2017; Sun et al., 2009). Although commonly described as
a “proinflammatory cytokine”, like IL-10, IL-8 also has anti-inflammatory
functions (Qazi et al., 2011).
3.2. Confirmatory factor analyses

The confirmatory factor analyses were conducted using the 849
complete observations out of the total 853 total blood draws in MIDUS-2
(some participants had missing data for some proteins and the models
estimated can't handle missing data). First, the factor structure described
above was re-estimated in MIDUS-2 (Fig. 1a). There were estimation is-
sues (i.e., Heywood cases) when this model was originally estimated.
This was resolved by constraining the factor loadings of CRP on Factor 1
and IL-8 on Factor 2 to equality. These two loadings were chosen because
they were almost identical in the original EFA (.77 and .76, respectively).
Model fit for replication of the empirically-identified structure had mixed
support for its replicability. Both the robust CFI and SRMR met conven-
tional criteria for acceptable fit (robust CFI ¼ 0.966, SRMR ¼ 0.022).
RMSEA was slightly above the traditional cut-off of 0.06 (robust RMSEA
¼ 0.068, 90% CI ¼ 0.042-0.097). The chi-square test was significant
(robust χ2 (2) ¼ 19.101, p < .001), but this may be uninformative with



Fig. 1. a. Empirically - identified Structure. b. A Priori/Tau-Equivalent Structure. Note: “a” denotes loadings constrained to equality, CRP ¼ C-reactive Protein, Fib ¼
fibrinogen, IL ¼ interleukin, TNFA ¼ Tumor Necrosis Factor-α, ICAM ¼ Intracellular Adhesion Molecule-1, Esel ¼ E-selectin.

Table 4
Protein loadings.

MIDUS-2 EFA (N
¼ 1231)

MIDUS-R CFA (N ¼ 849)

Factor
1

Factor
2

Factor 1 Factor 2

C-reactive Protein .77 .84* 90% CI ¼
.515–1.161

Interleukin-6
Tumor Necrosis
Factor-α

Interleukin-8 .76 .48* 90% CI
¼ .36-.60

Interleukin-10 .43 .51 90% CI
¼ .08-.93

Fibrinogen .63 .51 90% CI ¼ .33-
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sample sizes this large. Additionally, the EFA was well-replicated at the
factor loading level. Three of the four originally estimated factor loadings
were between the 95% confidence intervals for the factor loadings in the
replication model (Table 4).

Second, this empirically-identified factor structure was compared to
the “a priori”/tau-equivalent factor structure with all proteins having an
equal weight on a single factor (Fig. 1b). Model fit for the “a priori”/tau-
equivalent model was poor: robust CFI ¼ 0.089, robust RMSEA ¼ 0.184
(90% CI ¼ 0.163-0.206), and robust SRMR ¼ 0.160. The chi-square test
was significant (χ2 (27) ¼ 246.150, p < .001). Because there are a
different number of proteins included in these twomodels, comparison of
AIC/BIC statistics would be inappropriate. According to standard inter-
pretive thresholds, reliability was poor for all inflammatory factors. In
order of best to worst: Factor 1 (ω¼ 0.351), Factor 2 (ω¼ 0.298), and the
“a priori”/tau-equivalent model (ω ¼ 0.001).
.68
Intercellular
Adhesion Molecule-
1

E-selectin

Note: * ¼ constrained to equality (note that these are standardized estimates so
they will no longer be equal). Proteins not substantively loaded onto the factor
were not depicted. CFA confidence intervals that include the original EFA esti-
mate are bolded. MIDUS ¼ Midlife in the United States, EFA ¼ Exploratory
Factor Analysis, CFA ¼ Confirmatory Factor Analysis, CI ¼ Confidence Interval.
3.3. Health criterion models/predictive validity

To evaluate model fit and associations with external criteria, several
health conditions associated with inflammation (heart disease, diabetes,
asthma, depression, thyroid disease, peptic ulcer disease, and arthritis)
were modeled as predictors of a) the empirically-identified factors and
the individual proteins not included in these factors (Fig. 2a), b) the .“a
priori”/tau-equivalent factor (Fig. 2b), and c) individual proteins
(modeled without a latent variable; Fig. 2c) in separate models. Model fit
for the empirically-identified model was good (robust CFI ¼ 0.956,
robust RMSEA ¼ 0.053 (90% CI ¼ 0.043-0.063), robust SRMR ¼ 0.021).
As expected with this sample size, the chi-square tests was significant
(robust χ2 (23) ¼ 109.019, p < .001). Similar to the results of the CFA,
model fit of the “a priori”/tau-equivalent model was unacceptable: robust
CFI¼ 0.077, robust RMSEA¼ 0.133 (90% CI¼ 0.126-0.139), and robust
Table 3
Fit statistics of different inflammatory models.

Robust χ2 Robust χ2 df Robust pχ2 Robust CFI

MIDUS-R CFAs (N ¼ 849)
A priori/Tau-equivalent 246.150 27 <.001 .089
Empirically-identified 19.101 2 <.001 .966
MIDUS-R SEMs with Medical Criteria (N ¼ 776)
A priori/Tau-equivalent 1231.540 76 <.001 .077
Empirically-identified 109.019 23 <.001 .956
Individual proteins .000 0 N/A 1.000

Note: χ2 ¼ Chi-squared, df ¼ degrees of freedom, p ¼ p-value, CFI ¼ Comparative F
Interval, SRMS ¼ Standardized Root Mean Square Residual, AIC ¼ Akaike Informat
United States-Refresher, CFA¼ Confirmatory Factor Analysis, SEM ¼ Structural Equa
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SRMR ¼ 0.105. The chi-square test was significant (χ2 (76) ¼ 1231.540,
p < .001).

Because the individual protein model was just-identified, only AIC
and BIC were able to be estimated. Fortunately, these statistics allow
direct comparison to other models with the same variables, the primary
aim of this study. The empirically-identified model (Table 3: AIC/BIC ¼
Robust RMSEA Robust 90% CI RMSEA SRMR AIC BIC

.184 .163–.206 .160 50,864.267 50,944.916

.068 .042–.097 .022 25,598.958 25,655.887

.133 .126–.139 .105 46,447.441 46,559.141

.053 .043–.063 .021 45,511.005 45,869.375

.000 .000 .000 45,493.632 45,959.047

it Index, RMSEA ¼ Root Mean Square Error of Approximation, CI ¼ Confidence
ion Criterion, BIC ¼ Bayesian Information Criterion, MIDUS-R ¼ Midlife in the
tion Model, IL-6 ¼ Interleukin-6.



Fig. 2. a) Health Predictors of Empirically -
identified Structure.b) Health Predictors of A Pri-
ori/Tau - Equivalent Factor. c) Health Predictors
of Individual Proteins. Note: “a” indicates loadings
constrained to equality. CRP ¼ C-reactive Protein,
Fib ¼ fibrinogen, IL ¼ interleukin, TNFA ¼ Tumor
Necrosis Factor-α, ICAM ¼ Intracellular Adhesion
Molecule-1, E-sel ¼ E-selectin.c). Health Pre-
dictors of Individual Proteins. Note: CRP ¼ C-
reactive Protein, Fib ¼ fibrinogen, IL ¼ inter-
leukin, TNFA ¼ Tumor Necrosis Factor-α, ICAM ¼
Intracellular Adhesion Molecule-1, E-sel ¼ E-
selectin.
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45,511.005/45,869.375) and individual protein models (AIC/BIC ¼
45,493.632/45,959.047) both outperformed the “a priori”/tau-equiva-
lent model (AIC/BIC ¼ 46,447.441/46,559.141). Compared to the in-
dividual protein model, the empirically-identified model had better BIC,
but worse AIC, suggesting no clear answer as to which fit the data better.

Because of unacceptable model fit (Table 3), the associations between
the health conditions and the “a priori”/tau-equivalent inflammation
variable are not reported. The associations between the medical condi-
tions and a) the empirically-identified factors and b) the individual
proteins are reported in Table 5. In the model with the empirically-
identified factors and the individual proteins that did not load onto a
factor, both empirically-identified inflammatory factors, IL-6, and E-
selectin were significantly associated with a history of diabetes (Factor 1
β¼ 0.227, b¼ 0.769, SE¼ 0.187, p< .001; Factor 2 β¼ 0.164, b¼ 0.555,
SE ¼ 0.175, p ¼ .002; IL-6 β ¼ 0.066, b ¼ 0.385, SE ¼ 0.180, p ¼ .032; E-
selectin β ¼ 0.179, b ¼ 10.791, SE ¼ 2.626, p < .001). Additionally,
6

Factor 1 was associated with depression (β ¼ 0.101, b ¼ 0.224, SE ¼
0.112, p ¼ .046), Factor 2 was associated with arthritis (β ¼ 0.134, b ¼
0.294, SE ¼ 0.122, p ¼ .016), and ICAM-1 was associated with heart
disease (β¼�0.055, b¼ -29.959, SE¼ 11.492, p¼ .009); however, these
three results (43% of significant results) were no longer significant after
family-wise Benjamini-Hochberg false-discovery rate corrections (BH-
FDR). Families were grouped by independent variable (i.e., health con-
ditions). Thus, these relations between health conditions and inflam-
matory variables were corrected for six tests and the relations between
health conditions and individual proteins below were corrected for eight.

In the model with the medical conditions predicting individual pro-
teins, diabetes was significantly associated with CRP (β ¼ 0.122, b ¼
2.060, SE¼ 0.680, p ¼ .002), IL-8 (β¼ 0.148, b¼ 4.348, SE¼ 1.420, p ¼
.002), E-selectin (β ¼ 0.179, b ¼ 10.777, SE ¼ 2.625, p < .001), and
fibrinogen (β ¼ 0.174, b ¼ 41.082, SE ¼ 9.342, p < .001). Arthritis was
associated IL-8 (β ¼ 0.116, b ¼ 2.225, SE ¼ 0.571, p < .001). These five



Fig. 2. (continued).
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results were robust to BH-FDR corrections. The following three associa-
tions (38% of significant results), were no longer significant after BH-FDR
corrections: diabetes was associated with IL-6 (β ¼ 0.066, b ¼ 0.384, SE
¼ 0.180, p ¼ .032), heart disease was associated with ICAM-1 (β ¼
�0.056, b ¼ 30.060, SE ¼ 11.513, p ¼ .009)., and IL-8 was associated
with depression (β ¼ 0.071, b ¼ 1.363, SE ¼ 0.679, p ¼ .045).

4. Discussion

Most studies investigating inflammation in relation to medical or
psychiatric illnesses test individual proteins as predictors and/or out-
comes. This invites problems with multiple comparisons and creates a
disconnect between theories about generalized inflammation and the
analyses conducted. Alternatively, some studies (e.g., Chat et al., 2021;
Moriarity et al., 2020; Tait et al., 2019; Vinhaes et al., 2021) use com-
posite variables created without first investigating the appropriateness of
this decision in what we describe as “a priori”/tau-equivalent compos-
ites. The present study sought to apply standard aggregate-building
procedures to a set of eight inflammatory proteins to critically evaluate
the statistical viability of this approach and compare it to
empirically-identified inflammatory factors and individual proteins. The
current analyses indicated that, out of the eight proteins available in the
MIDUS datasets, two factors emerged. Specifically, CRP and fibrinogen
loaded onto the first factor (Factor 1, interpreted to reflect the acute
phase reaction) and IL-8 and IL-10 loaded onto a second factor (Factor 2,
interpreted to reflect inflammatory processes (both pro- and
anti-inflammatory) particularly associated with neutrophil activity).
Across all models estimated, the “a priori”/tau-equivalent model did not
7

fit the data well enough to be considered a valid approach. In fact, the
empirically-identified structure and modeling individual proteins
out-performed this approach in all comparisons. Further, reliability es-
timates for all latent variables (both “a priori”/tau-equivalent and
“empirically-identified”) were poor.

Fit criteria diverged on whether the empirically-identified structure
fit the model with medical variables better than modeling the proteins
individually. Specifically, BIC supported the empirically-identified
structures and AIC supported individual proteins. Unfortunately,
because all variables in the individual protein model were observed
variables (resulting in a “just-identified” model), it is impossible to
evaluate other fit statistics. Both sets of analyses resulted in primarily the
same conclusion (inflammation was most robustly associated with a
history of diabetes). However, it is worth note that a larger proportion of
results were robust to BH-FDR corrections (despite a larger number of
total analyses) in the individual protein model compared to the
empirically-identified factors model. Thus, there might be a level of
specificity in associations that were washed out when using the latent
variable models due to decreased signal-to-noise ratios, nullifying any
potential benefit of combining proteins into composites with respect to
multiple comparisons. However, these findings are far from conclusive
and future research is necessary. Additionally, careful consideration
should be given to whether variable aggregation is a theoretically-
appropriate course of action (e.g., whether it is theoretically sound to
aggregate often pleotropic proteins into composites or whether specific
biomarkers are theorized to drive effects rather than generalized
inflammation). Further, this study adopted a latent modeling approach to
form factors; it is possible that other types of modeling (e.g., causal



Table 5
Health conditions predicting inflammatory outcomes (N ¼ 776).
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indicator models, network models, multiple-indicator multiple-cause
(MIMIC) models) may be more suitable for modeling inflammatory
processes.

Interestingly, the two proteins that loaded onto Factor 1 (CRP and
fibrinogen) also loaded onto the same factor in prior research in a com-
munity sample of older adults (Egnot et al., 2018), a sample of adults
with unstable angina pectoris (Koukkunen et al., 2001), a samples of
patients with insulin resistance syndrome (Sakkinen et al., 2000), and a
sample of patients with acute coronary syndrome (Tziakas et al., 2007).
8

Also consistent with this study, ICAM-1 was measured, but did not load
onto this factor in Egnot et al. (2018) or Tziakas et al. (2007). Similarly,
TNF-α also was measured, but did not load onto this factor in Koukkunen
et al. (2001). Consequently, there is evidence that this grouping is not an
artifact of the specific array of proteins available in this study or other
study-specific methods, demonstrating both internal replicability in this
study and external replicability with previous studies. It is worth note
that IL-6 loaded onto this factor in several studies (Egnot et al., 2018;
Koukkunen et al., 2001) and a previous version of this manuscript.
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Notably, both papers and the previous version of this manuscript used
factor analyses in which normality was handled by transforming values
(or didn't report on how non-normality was handled at all) instead of
running models robust to non-normality, which might drive this differ-
ence and highlight the importance of using robust estimation techniques
with skewed data. Future research is needed to test whether the structure
of inflammatory proteins is stable in more dynamic contexts (e.g., across
acute or chronic stressors) and over time (e.g., weeks or months).

It is critical to underscore the pleotropic nature of many inflammatory
proteins and the complexity of inflammatory processes. For example, IL-
6, commonly conceptualized as a “pro-inflammatory” protein, has
several anti-inflammatory functions that are most likely dependent on
classic-signaling via the membrane-bound non-signaling α-receptor IL-6R
(Scheller et al., 2011). Given the contextual functioning of the immune
system, shared variance analyses might be more informative in the
context of acute inflammatory activity compared to the resting data used
in this study. Truly, due to the complexity of this system, comparable
model fit to the empirically-indicated factor structure, poor factor reli-
ability, and greater robustness of results to multiplicity correction, it
might be more appropriate to analyze specific proteins and plan around
the inherent limitations of doing so. However, should the decision be
made to use aggregate variables of inflammation, the results of this study
consistently discourage the use of aggregates in which all proteins are
equally weighted (referred to as an “a priori”/tau-equivalent composite
throughout). Instead, standard aggregate measure-building procedures
should be utilized to inform data aggregation (for more detailed concerns
about the use of straight sum scoring to create aggregates when not all
component variables are equally associated with the construct of interest,
see McNeish and Wolf (2020)). Until a more comprehensive under-
standing of how to model inflammation is achieved, researchers may
benefit from simultaneously testing multiple scales of inflammatory
measurement (Moriarity and Alloy, 2020) or focusing on individual
proteins.

This study has several important strengths. First, two sizeable datasets
were used allowing for replication. Second, the replication sample was
specifically designed for replication analyses, maximizing comparability
of methods. Third, the fact that both samples were community samples
maximizes generalizability to other non-medical samples and expands
upon the scant work on the dimensionality of inflammatory proteins that
has primarily used medical samples. Still, ideal modeling techniques
could differ for certain medical populations and additional work is
needed to thoroughly vet the generalizability of the structure of in-
flammatory proteins. Additionally, this study used methods robust to
non-normal data structures, whereas many studies in this field transform
the data to fit the models (resulting in data that is not truly representative
of the sample under study).

However, this study must be interpreted in the context of several
limitations. First, although eight proteins are more than many studies,
there are a lot of inflammatory markers that were not included (e.g., IL-
1β, T-cells, B-cells). Thus, the empirically-identified structure might look
different when a broader array/different proteins are used. However, the
finding that CRP and fibrinogen loaded onto one factor (which did not
include ICAM-1 or TNF-α) is consistent with previous investigations of
the dimensionality of inflammation in medical and community samples
(e.g., Egnot et al. (2017)), supporting the generalizability of this factor.
Second, the number of identifiable latent factors is constrained by the
number of indicator variables. Consequently, a study with more than
eight indicator variables might find a more multidimensional factor
structure. Relatedly, factors with less than three indicators (as was the
case for both empirically-identified factors in this study) are generally
not adequately reliable. Third, the ability to test these factors in the
context of acute inflammatory activity (e.g., endotoxin exposure, acute
stress task) would provide great insight into their biological plausibility.
Additionally, although several studies using community and clinical
samples have found CRP and fibrinogen to load onto the same factor, it
would be insightful for future studies to directly test the comparability of
9

inflammatory structure as a function of medical status using measure-
ment invariance testing. Finally, the medical criterion variables were
measured via self-report of a history of a diagnosis. These results would be
more informative if active medical conditions were known.

5. Conclusion

This study used standard aggregate measure building procedures to
investigate the structure of eight inflammatory proteins. Results firmly
indicate that an “a priori”/tau-equivalent aggregate in which all in-
flammatory proteins equally load onto a single dimension did not reflect
the data accurately enough to warrant use in research. Both a two-factor
empirically-identified structure and individual proteins were preferrable.
Although there is no conclusive evidence about which of these two op-
tions are preferrable, given comparable model fit, similar conclusions in
tests of predictive validity, results that were more robust to correcting for
multiple comparisons, unacceptable latent factor reliability, and ease of
interpretation, we recommend researchers either analyze individual
proteins or explore multiple levels of inflammatory measurement (e.g.,
factors and individual proteins) until more work is done to explore the
empirical and theoretical support for inflammatory factors. For example,
direct comparison of inflammatory structure in samples with different
medical statuses and tests of structural invariance across acute inflam-
matory reactions would be important studies to extend this line of in-
quiry. To facilitate other researchers in designing studies and analyzing
data, indices of model fit and factor reliability were described as
appropriate. By building a strong physiometric foundation, research on
inflammation can become more replicable, cost-effective, and clinically-
impactful (Moriarity, 2021).
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